3 Chapter 3: Types of games

idurosimi

Cooperative or non-cooperative

A game is cooperative if the players are able to form binding commitments. For instance the legal system requires them to adhere to their promises. In noncooperative games this is not possible.

Often it is assumed that communication among players is allowed in cooperative games, but not in noncooperative ones. However, this classification on two binary criteria has been questioned, and sometimes rejected (Harsanyi 1974).

Of the two types of games, noncooperative games are able to model situations to the finest details, producing accurate results. Cooperative games focus on the game at large. Considerable efforts have been made to link the two approaches. The so-called Nash-programme[clarification needed] has already established many of the cooperative solutions as noncooperative equilibria.

Hybrid games contain cooperative and non-cooperative elements. For instance, coalitions of players are formed in a cooperative game, but these play in a non-cooperative fashion.

Symmetric and asymmetric

E F
E 1, 2 0, 0
F 0, 0 1, 2
An asymmetric game
Main article: Symmetric game

A symmetric game is a game where the payoffs for playing a particular strategy depend only on the other strategies employed, not on who is playing them. If the identities of the players can be changed without changing the payoff to the strategies, then a game is symmetric. Many of the commonly studied 2×2 games are symmetric. The standard representations of chicken, the prisoner’s dilemma, and the stag hunt are all symmetric games. Some[who?] scholars would consider certain asymmetric games as examples of these games as well. However, the most common payoffs for each of these games are symmetric.

Most commonly studied asymmetric games are games where there are not identical strategy sets for both players. For instance, the ultimatum game and similarly thedictator game have different strategies for each player. It is possible, however, for a game to have identical strategies for both players, yet be asymmetric. For example, the game pictured to the right is asymmetric despite having identical strategy sets for both players.

Zero-sum and non-zero-sum

A B
A –1, 1 3, –3
B 0, 0 –2, 2
A zero-sum game
Main article: Zero–sum game

Zero-sum games are a special case of constant-sum games, in which choices by players can neither increase nor decrease the available resources. In zero-sum games the total benefit to all players in the game, for every combination of strategies, always adds to zero (more informally, a player benefits only at the equal expense of others). Pokerexemplifies a zero-sum game (ignoring the possibility of the house’s cut), because one wins exactly the amount one’s opponents lose. Other zero-sum games includematching pennies and most classical board games including Go and chess.

Many games studied by game theorists (including the infamous prisoner’s dilemma) are non-zero-sum games, because the outcome has net results greater or less than zero. Informally, in non-zero-sum games, a gain by one player does not necessarily correspond with a loss by another.

Constant-sum games correspond to activities like theft and gambling, but not to the fundamental economic situation in which there are potential gains from trade. It is possible to transform any game into a (possibly asymmetric) zero-sum game by adding an additional dummy player (often called “the board”), whose losses compensate the players’ net winnings.

Simultaneous and sequential

Main articles: Sequential game and Simultaneous game

Simultaneous games are games where both players move simultaneously, or if they do not move simultaneously, the later players are unaware of the earlier players’ actions (making them effectivelysimultaneous). Sequential games (or dynamic games) are games where later players have some knowledge about earlier actions. This need not be perfect information about every action of earlier players; it might be very little knowledge. For instance, a player may know that an earlier player did not perform one particular action, while he does not know which of the other available actions the first player actually performed.

The difference between simultaneous and sequential games is captured in the different representations discussed above. Often, normal form is used to represent simultaneous games, and extensive form is used to represent sequential ones. The transformation of extensive to normal form is one way, meaning that multiple extensive form games correspond to the same normal form. Consequently, notions of equilibrium for simultaneous games are insufficient for reasoning about sequential games; see subgame perfection.

In short, the differences between sequential and simultaneous games are as follows:

Sequential Simultaneous
Normally denoted by: Decision Trees Payoff Matrices
Prior knowledge of opponent’s move: Yes No
Time Axis: Yes No
Also known as: Extensive Game Strategic Game

Perfect information and imperfect information

Main article: Perfect information

A game of imperfect information (the dotted line represents ignorance on the part of player 2, formally called an information set)

An important subset of sequential games consists of games of perfect information. A game is one of perfect information if all players know the moves previously made by all other players. Thus, only sequential games can be games of perfect information because players in simultaneous games do not know the actions of the other players. Most games studied in game theory are imperfect-information games. Interesting examples of perfect-information games include the ultimatum gameand centipede game. Recreational games of perfect information games include chessgo, and mancala. Many card games are games of imperfect information, for instance poker or contract bridge.

Perfect information is often confused with complete information, which is a similar concept. Complete information requires that every player know the strategies and payoffs available to the other players but not necessarily the actions taken. Games of incomplete information can be reduced, however, to games of imperfect information by introducing “moves by nature” (Leyton-Brown & Shoham 2008, p. 60).

Combinatorial games

Games in which the difficulty of finding an optimal strategy stems from the multiplicity of possible moves are called combinatorial games. Examples include chess and go. Games that involve imperfect or incomplete information may also have a strong combinatorial character, for instance backgammon. There is no unified theory addressing combinatorial elements in games. There are, however, mathematical tools that can solve particular problems and answer general questions.[30]

Games of perfect information have been studied in combinatorial game theory, which has developed novel representations, e.g. surreal numbers, as well as combinatorial and algebraic (and sometimes non-constructive) proof methods to solve games of certain types, including “loopy” games that may result in infinitely long sequences of moves. These methods address games with higher combinatorial complexity than those usually considered in traditional (or “economic”) game theory.[31][32] A typical game that has been solved this way is hex. A related field of study, drawing from computational complexity theory, is game complexity, which is concerned with estimating the computational difficulty of finding optimal strategies.[33]

Research in artificial intelligence has addressed both perfect and imperfect (or incomplete) information games that have very complex combinatorial structures (like chess, go, or backgammon) for which no provable optimal strategies have been found. The practical solutions involve computational heuristics, like alpha-beta pruning or use of artificial neural networks trained by reinforcement learning, which make games more tractable in computing practice.[30][34]

Infinitely long games

Main article: Determinacy

Games, as studied by economists and real-world game players, are generally finished in finitely many moves. Pure mathematicians are not so constrained, and set theorists in particular study games that last for infinitely many moves, with the winner (or other payoff) not known until after all those moves are completed.

The focus of attention is usually not so much on what is the best way to play such a game, but simply on whether one or the other player has a winning strategy. (It can be proven, using the axiom of choice, that there are games—even with perfect information, and where the only outcomes are “win” or “lose”—for which neither player has a winning strategy.) The existence of such strategies, for cleverly designed games, has important consequences in descriptive set theory.

[edit]Discrete and continuous games

Much of game theory is concerned with finite, discrete games, that have a finite number of players, moves, events, outcomes, etc. Many concepts can be extended, however. Continuous games allow players to choose a strategy from a continuous strategy set. For instance, Cournot competition is typically modeled with players’ strategies being any non-negative quantities, including fractional quantities.

Differential games

Differential games such as the continuous pursuit and evasion game are continuous games where the evolution of the players’ state variables is governed by differential equations. The problem of finding an optimal strategy in a differential game is closely related to the optimal control theory. In particular, there are two types of strategies: the open-loop strategies are found using the Pontryagin maximum principlewhile the closed-loop strategies are found using Bellman’s Dynamic Programming method.

A particular case of differential games are the games with random time horizon.[35] In such games, the terminal time is a random variable with a given probability distribution function. Therefore, the players maximize the mathematical expectation of the cost function. It was shown that the modified optimization problem can be reformulated as a discounted differential game over an infinite time interval.

[edit]Many-player and population games

Games with an arbitrary, but finite, number of players are often called n-person games (Luce & Raiffa 1957). Evolutionary game theory considers games involving a population of decision makers, where the frequency with which a particular decision is made can change over time in response to the decisions made by all individuals in the population. In biology, this is intended to model (biological) evolution, where genetically programmed organisms pass along some of their strategy programming to their offspring. In economics, the same theory is intended to capture population changes because people play the game many times within their lifetime, and consciously (and perhaps rationally) switch strategies (Webb 2007).

Stochastic outcomes (and relation to other fields)

Individual decision problems with stochastic outcomes are sometimes considered “one-player games”. These situations are not considered game theoretical by some authors.[by whom?] They may be modeled using similar tools within the related disciplines of decision theoryoperations research, and areas of artificial intelligence, particularly AI planning (with uncertainty) and multi-agent system. Although these fields may have different motivators, the mathematics involved are substantially the same, e.g. using Markov decision processes (MDP).[citation needed]

Stochastic outcomes can also be modeled in terms of game theory by adding a randomly acting player who makes “chance moves”, also known as “moves by nature” (Osborne & Rubinstein 1994). This player is not typically considered a third player in what is otherwise a two-player game, but merely serves to provide a roll of the dice where required by the game.

For some problems, different approaches to modeling stochastic outcomes may lead to different solutions. For example, the difference in approach between MDPs and the minimax solution is that the latter considers the worst-case over a set of adversarial moves, rather than reasoning in expectation about these moves given a fixed probability distribution. The minimax approach may be advantageous where stochastic models of uncertainty are not available, but may also be overestimating extremely unlikely (but costly) events, dramatically swaying the strategy in such scenarios if it is assumed that an adversary can force such an event to happen.[36] (See black swan theory for more discussion on this kind of modeling issue, particularly as it relates to predicting and limiting losses in investment banking.)

General models that include all elements of stochastic outcomes, adversaries, and partial or noisy observability (of moves by other players) have also been studied. The “gold standard” is considered to be partially observable stochastic game (POSG), but few realistic problems are computationally feasible in POSG representation.[36]

Metagames

These are games the play of which is the development of the rules for another game, the target or subject game. Metagames seek to maximize the utility value of the rule set developed. The theory of metagames is related to mechanism design theory.

The term metagame analysis is also used to refer to a practical approach developed by Nigel Howard (Howard 1971) whereby a situation is framed as a strategic game in which stakeholders try to realise their objectives by means of the options available to them. Subsequent developments have led to the formulation of confrontation analysis.

License

Game Theory Copyright © 2013 by idurosimi. All Rights Reserved.

Feedback/Errata

Leave a Reply

Your email address will not be published. Required fields are marked *